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Intro

• Jet-Substructure techniques for boosted jets for signal/bkg disc

• Particularly important for hadronically decaying colourless particles

• Here focus on two-pronged decays, like a W
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N-Subjettiness:



N-subjettiness

• Uniform and flat in energy and angle • more soft and collinear
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N-subjettiness
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One then expects to be a good discriminant
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• Uniform and flat in energy and angle • more soft and collinear



N-Subjettines cut

• First efforts resumming double logs in the small tau region 
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N-Subjettines cut

• First efforts resumming double logs in the small tau region 
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• The interesting region’s clearly at much larger tau!

• Structure now more complicated, as finite terms have to be 
included to have correct accuracy in rho
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This is (in essence) the contribution we compute



N-Subjettiness cut

Small tau
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N-Subjettiness cut

Small tau Finite tau
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N-Subjettiness cut

Small tau Finite tau
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Next slides!!!
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Finite tau

• Single out the emission with the largest rho: 
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Finite tau
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• Structure of the result is remarkably simple: scale depends on value of tau
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Finite tau

• Multiple emission function, keeps track of transition points at
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Results

• Checks of the minimisation procedure

• minimal axes quite similar to kt

• Analytical vs exact: quite good at small/large tau

• But, it’s integrated over, so beyond our accuracy (originates in neglecting large angle effects)



Results

Parton Level

• Good excuse to do a generators comparison!

• Analytical scale var is quite large (it’s only LL)

• Overall quite good agreement 
(Herwig was before color fix)



Results

Hadron Level

• Clearly no control over NP-region

• still quite large effects in perturbative region

• rest is, over all, well under control



Results

Decorrelated taggers• Find the value of tau that makes distribution flat

• Not necessarily an easy task in general, 
quite easy having analytical control

• To show-off we do it and seems to be working pretty reliably



Conclusions

• Jet-substructure has been successfully used for discrimination problems

• Analytical calculations in this field have also helped introducing new observables

• However often oversimplifications to overcome difficulties

• This calculation addresses some of them, and we produce some results with it!

• The important thing is that with an analytical calculation one is 
able to extract some physics information on the problem at hand


